Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sci Total Environ ; 881: 163443, 2023 Jul 10.
Article in English | MEDLINE | ID: covidwho-2293752

ABSTRACT

The wide spread of the coronavirus disease (COVID-19) has significantly influenced human activities around the world, providing a unique opportunity to investigate the response of air pollution to anthropogenic emission reduction. Compared with numerous studies on conventional air pollutants, atmospheric ammonia (NH3) that has matched sources from both anthropogenic and natural emissions has been rarely investigated. Here we assess impacts of the COVID-19 lockdown on ambient NH3 variation across India, one of the most severe NH3 pollution region in the world. The role of meteorology in shaping emission contribution to NH3 pollution and respective contribution of each emission source to ambient NH3 before and after the COVID-19 outbreak were investigated using the XGBoost algorithm coupled with WRF-Chem model. Results showed that ambient NH3 concentrations in the seven major cities (Hyderabad, Bengaluru, Chennai, Delhi, Lucknow, Kolkata and Mumbai) decreased by 2.1-53.8 % whereas in Ahmedabad increased by 20.3 % during the COVID-19 lockdown period. Obvious decrease in NH3 in Indo-Gangetic Plain (-17.1 %) was mainly driven by favorable meteorology, whereas the slight decline in NH3 in South India was mainly driven by epidemic-related emission control (-8.56 %). Source appointment results showed that the contribution of industrial emission (Ind) to ambient NH3 in most megacities showed a decreasing trend (between 11 % and 26 %) during the lockdown period. However, the reduction effect was mostly compensated by increasing contributions (15-25 %) of residential emission (Res) or agricultural soil emission (Ags). Particularly, in Ahmedabad and Lucknow ambient NH3 increased by 20.3 % and 12 % during the lockdown period, the reduction effect of Ind on ambient NH3 (-23 % and -11 %, respectively) was absolutely compensated by enhanced contribution of Res (24 %) and Ags (12 %), respectively. Our results highlight the importance of eliminating residential and agricultural NH3 emissions especially in North India.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Ammonia/analysis , COVID-19/epidemiology , Communicable Disease Control , India/epidemiology , Air Pollutants/analysis , Air Pollution/analysis , Cities , Environmental Monitoring , Particulate Matter/analysis
2.
Chemosphere ; 320: 138098, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2236802

ABSTRACT

The use of disinfectants made from quaternary ammonium compounds (QACs) has greatly increased since the outbreak of SARS-CoV-2. However, the effect of QACs on wastewater treatment performance is still unclear. In this study, a commonly used QAC, i.e., benzyl dodecyl dimethyl ammonium bromide (BDAB), was added to a moving-bed biofilm reactor (MBBR) to investigate BDAB's effect on nutrient removal. When the BDAB concentration was increased to 50 mg L-1, the ammonia removal efficiency (ARE) greatly decreased, as did the nitrate production rate constants (NPR). This inhibition was partly recovered by decreasing the BDAB concentration to 30 mg L-1. Metagenomic sequencing revealed the functional genera present during different stages of the control (Rc) and BDAB-added reactors (Re). The enriched genera (Rudaea, Nitrosospira, Sphingomonas, and Rhodanobacter) in Rc mainly related to the nitrogen metabolism, while the enriched genera in Re was BDAB-concentration dependent. Functional genes analysis suggested that a lack of ammonia oxidase-encoding genes (amoABC) may have caused a decrease in ARE in Re, while the efflux pump-encoding genes emrE, mdfA, and oprM and a gene encoding BAC oxygenase (oxyBAC) were responsible for BDAB resistance. The increase in the total abundance of antibiotic resistance genes (ARGs) in Re revealed a potential risk arising from BDAB. Overall, this study revealed the potential effect and ecological risks of BDAB introduction in WWTPs.


Subject(s)
COVID-19 , Quaternary Ammonium Compounds , Humans , Ammonia/analysis , Bacteria , Biofilms , Bioreactors , Denitrification , Nitrogen/analysis , SARS-CoV-2 , Genomics
3.
Chemosphere ; 314: 137702, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2165150

ABSTRACT

This study aims to investigate the spatiotemporal trends and impact of COVID-19 lockdowns to the profile of physiochemical parameters in the influent of wastewater treatment plants (WWTPs) around Brisbane, Australia. One 24-hr composite influent sample was collected from 10 WWTPs and analyzed for a range of physiochemical parameters per week (i.e., chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), ammonia, volatile suspended solid (VSS)) and per month (i.e., Ni and Cr) from 2012 to 2020, including the period of COVID-19 lockdowns in the region. The catchments studied were urban, with a mix of domestic and industrial activities contributing towards the contaminant profile. Statistical analysis identified that industrial and commercial land use, as well as population size had a large impact to the parameter loads and profile. Per capita mass loads of Cr in one catchment were 100 times higher than in others from one industrial point source. TP demonstrated a potential monotonic decrease over time due to practical reduction policies that have been implemented for phosphorous content in household detergents, except for one catchment where trade waste from food manufacturing industries contributed to an overall increase of 6.9%/year TP. The COVID-19 lockdown (March-April 2020) posed different impact on different catchments, either decrease (7-61%) or increase (2-40%) of most parameter loads (e.g., COD, TOC, TN, TP, VSS, Ammonia), which was likely driven by catchment characteristics (i.e., the proportion of residential, commercial, and industrial land uses). This study enhances our understanding of spatiotemporal trend of contaminants in the catchments for further effective source control.


Subject(s)
COVID-19 , Sewage , Humans , Ammonia/analysis , COVID-19/epidemiology , Communicable Disease Control , Australia , Nitrogen/analysis , Phosphorus/analysis , Waste Disposal, Fluid
4.
Int J Environ Res Public Health ; 19(11)2022 05 31.
Article in English | MEDLINE | ID: covidwho-1892870

ABSTRACT

Fertilizers are made from manure, but they are also produced through chemical processes. Fertilizer is an ammonia emission source; it releases ammonia when used. Ammonia is also emitted during the production process. Although many studies related to fertilizer application have been conducted, there are few research cases related to the production process and related emissions are not calculated. In this study, the ammonia emissions from NPK (nitrogen phosphorus Potassium oxide) fertilizer production facilities were checked through actual measurement and related characteristics were analyzed. In addition, emission factors were developed, and the necessity of developing emission factors was also confirmed. As a result of the development of the emission factor, it was found to be 0.001 kgNH3/ton, which is like the range of emission factors in related fields. The NPK ammonia emission factor of this study was found to be higher than the minimum emission factor currently applied in South Korea, and it was judged to be a level that can be used as an emission factor.


Subject(s)
Ammonia , Fertilizers , Agriculture , Ammonia/analysis , Manure , Nitric Oxide , Nitrogen , Nitrous Oxide/analysis , Soil
5.
Sci Rep ; 11(1): 7185, 2021 03 30.
Article in English | MEDLINE | ID: covidwho-1160573

ABSTRACT

The presence of ammonia within the body has long been linked to complications stemming from the liver, kidneys, and stomach. These complications can be the result of serious conditions such as chronic kidney disease (CKD), peptic ulcers, and recently COVID-19. Limited liver and kidney function leads to increased blood urea nitrogen (BUN) within the body resulting in elevated levels of ammonia in the mouth, nose, and skin. Similarly, peptic ulcers, commonly from H. pylori, result in ammonia production from urea within the stomach. The presence of these biomarkers enables a potential screening protocol to be considered for frequent, non-invasive monitoring of these conditions. Unfortunately, detection of ammonia in these mediums is rather challenging due to relatively small concentrations and an abundance of interferents. Currently, there are no options available for non-invasive screening of these conditions continuously and in real-time. Here we demonstrate the selective detection of ammonia using a vapor phase thermodynamic sensing platform capable of being employed as part of a health screening protocol. The results show that our detection system has the remarkable ability to selectively detect trace levels of ammonia in the vapor phase using a single catalyst. Additionally, detection was demonstrated in the presence of interferents such as carbon dioxide (CO2) and acetone common in human breath. These results show that our thermodynamic sensors are well suited to selectively detect ammonia at levels that could potentially be useful for health screening applications.


Subject(s)
Ammonia/analysis , Biomarkers/analysis , Breath Tests/instrumentation , Breath Tests/methods , COVID-19 , Carbon Dioxide , Equipment Design , Humans , Humidity , Renal Insufficiency, Chronic , Temperature , Thermodynamics
6.
Environ Res ; 191: 110048, 2020 12.
Article in English | MEDLINE | ID: covidwho-716699

ABSTRACT

Nitrogen oxides (NOx), sulphur oxides (SOx) and ammonia (NH3) are among the main contributors to the formation of secondary particulate matter (PM2.5), which represent a severe risk to human health. Even if important improvements have been achieved worldwide, traffic, industrial activities, and the energy sector are mostly responsible for NOx and SOx release; instead, the agricultural sector is mainly responsible for NH3 emissions. Due to the emergency of coronavirus disease, in Italy schools and universities have been locked down from late February 2020, followed in March by almost all production and industrial activities as well as road transport, except for the agricultural ones. This study aims to analyze NH3, PM2.5 and NOx emissions in principal livestock provinces in the Lombardy region (Brescia, Cremona, Lodi, and Mantua) to evaluate if and how air emissions have changed during this quarantine period respect to 2016-2019. For each province, meteorological and air quality data were collected from the database of the Regional Agency for the Protection of the Environment, considering both data stations located in the city and the countryside. In the 2020 selected period, PM2.5 reduction was higher compared to the previous years, especially in February and March. Respect to February, PM2.5 released in March in the city stations reduced by 19%-32% in 2016-2019 and by 21%-41% in 2020. Similarly, NOx data of 2020 were lower than in the 2016-2019 period (reduction in March respect to February of 22-42% for 2016-2019 and of 43-62% for 2020); in particular, this can be observed in city stations, because of the current reduction in anthropogenic emissions related to traffic and industrial activities. A different trend with no reductions was observed for NH3 emissions, as agricultural activities have not stopped during the lockdown. Air quality is affected by many variables, for which making conclusions requires a holistic perspective. Therefore, all sectors must play a role to contribute to the reduction of harmful pollutants.


Subject(s)
Air Pollutants , Air Pollution , Coronavirus Infections , Pandemics , Pneumonia, Viral , Air Pollutants/analysis , Air Pollution/analysis , Ammonia/analysis , Animals , Betacoronavirus , COVID-19 , Cities , Environmental Monitoring , Humans , Italy , Livestock , Nitrogen Oxides/analysis , Particulate Matter/analysis , Quarantine , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL